n2+1 | ||
dn= | ||
n+2 |
(n+1)2+1 | n2+1 | ||
− | = | ||
n+3 | n+2 |
(n2+2n+2)(n+2) − (n2+1)(n+3) | |
= | |
(n+2)(n+3) |
n3+2n2+2n2+4n+4 − n3−3n2−n−3 | |
= | |
(n+2)(n+3) |
n2+3n+1 | |
> 0 dla każdego n | |
(n+2)(n+3) |
2 | ||
czyli jest ograniczony z dołu przez d1 = | ||
3 |
n2+1 | n2−4 | (n−2)(n+2) | ||||
dn= | > | = | = n−2 | |||
n+2 | n+2 | n+2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |